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Describing the Organization of Dominance Relationships
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Methods to describe dominance hierarchies are a key tool in primatology
studies. Most current methods are appropriate for analyzing linear and
near-linear hierarchies; however, more complex structures are common
in primate groups. We propose a method termed ‘“‘dominance-directed
tree.” This method is based on graph theory and set theory to analyze
dominance relationships in social groups. The method constructs a
transitive matrix by imposing transitivity to the dominance matrix and
produces a graphical representation of the dominance relationships,
which allows an easy visualization of the hierarchical position of the
individuals, or subsets of individuals. The method is also able to detect
partial and complete hierarchies, and to describe situations in which
hierarchical and nonhierarchical principles operate. To illustrate the
method, we apply a dominance tree analysis to artificial data and
empirical data from a group of Cebus apella. Am. J. Primatol. 68:189-207,
2006. © 2006 Wiley-Liss, Inc.
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INTRODUCTION

The concept of dominance hierarchy has been considered a central feature for
understanding the organization of primate social groups. Dominance is defined as
the attribute of repeated patterns of agonistic interactions between two
individuals, such that dominants win most of the conflicts over subordinate
individuals [Drews, 1993]. If individuals of a social group can be ordered based on
dominance relationships, then a dominance hierarchy is present. The concept is
very appealing because the complexities of the social relationships can be
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summarized by a reduced set of relationships or by some simple rules as given by
the hierarchical principles.

However, the term ‘“hierarchy’’ has been loosely used in behavioral studies
and may have contradictory meanings. It is not true that any set of dominance
relationships forms a hierarchy [Drews, 1993]. Moreover, lack of linearity is not
synonymous with nonhierarchical dominance relationships. This mistaken
assumption is probably related to the fact that nearly all current methods of
studying dominance structure are based on the linear hierarchical model, either
by calculating an index of linearity or by ordering individuals of a social group
into linear or near-linear dominance hierarchies [reviewed in de Vries, 1998;
de Vries & Appleby, 2000].

However, primates may present more complex dominance relationships,
organized into partial hierarchies with several independent branches, that are
not properly assessed by current methods [Jameson et al., 1999].

In the present work we propose the use of set theory and the graph theory
concept of directed tree as a more general method for describing dominance
organization. We begin with a formal definition of structure and hierarchy with
the aid of set and graph theories, and suggest that the number of individuals
restricts the type of organization and the type of hierarchy that may arise in the
social structure. We illustrate the method (here called dominance tree analysis)
by analyzing hypothetical data sets that were devised to mimic the complexities
generally found in real data, and provide an example using field data from Cebus
apella.

The use of formal terms is by no means standard in set theory and graph
theory. Thus, explicit definitions and notations are needed. Whenever possible,
we adapted the formal terms to those customarily used in the study of social
groups (see Pinter [1971] and Pollock [1990] for expositions of set theory, and
Harary et al. [1965] and Carley and Prietula [1994] for graph theory)

MATERIALS AND METHODS
Structures and Hierarchy

In this work a social structure is defined by a nonempty set of members
(the individuals of a social group) and a set of dyadic dominance relationships
(a binary relation on the set of members). So defined, the structure is a graph, as
defined in graph theory. The number of members (here denoted by N) defines the
size of the structure. For simplicity, here “relation” refers only to dominance
relationships, and covers different types of relationships (overt aggression,
threatening, displacement of the opponent, priority of access to food or females,
etc.).

To conform to the concept of structure, dominance should be stated as a
binary relation within the set of members. We denote the dominance relationship
by the “greater than’ sign (e.g., A>B means “A dominates B” or “A defeats B”’).

A structure may be represented by a matrix of dominance relationships in
which the cells take a value of one if the row member dominates the column
member, or zero if the row member does not dominate the column member. We
denote the cell of the row member A and column member B as [A,B], and, for
simplicity, its value as [A,B] = 1 if individual A dominates individual B, or [A,B] =
0 if A does not dominate B. A general cell is denoted by letters in italics, e.g., [i,/].
By definition, every dominance matrix has the property of irreflexivity (for every
member i, [i,i]] = 0) and asymmetry (for all different members i and j, if [i,j]] = 1,
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then [j,i] = 0). It is not necessary for all dyads to show dominance relationships,
so it is possible that, for some dyads, [i,j] = 0 and [j,;] = 0.

Orders

A structure is said to be an order if in addition to irreflexivity and asymmetry,
it has the property of transitivity: for every members i, j and k%, if i>j and
Jj>Fk, then i>k. Or, in terms of the matrix notation, if [ij] = 1 and [j,k] = 1,
then [i,k] = 1. A structure fails to be transitive (and hence is not an order) if there
exist members i, j, and k& such that [ij] = 1, [j,k] = 1, but [i,k] = 0. A severe
failure of transitivity occurs when the structure shows circular triads: for some
i,j,and k,i>j,j>k, and k>1i.

In this work “hierarchy” is defined as an order. Hence, a hierarchy is a
structure that is irreflexive, asymmetric, and transitive. Irreflexivity and
asymmetry result directly from the definition of the dominance relationship.
Transitivity should be checked in each case.

Hierarchies may be linear or partial.

Linear Hierarchy

A linear hierarchy is a structure that in addition to being an order, is also
complete: for every different pair : and j, [i,j] = 1 or else [j,i] = 1. Therefore, we
need to assess the dominance relationship in all possible dyads, as in a round-
robin tournament. Thus, the number of nonzero dominance relationships is given
by N(N-1)/2. In terms of set theory, we say that every two members show
comparability in respect to the dominance relation.

It is very easy and simple to describe a complete order. All of the relevant
information is given by a unique ordered arrangement of the members—for
example, A>B>C>D>E in a group of five members. Here we call this type of
ordered arrangement a lineage. Only N—1 relationships (those relating two
adjacent members in the lineage (four, in the example above)) are relevant to
describe the hierarchy. The other relationships are given by the transitive
property: if A>B and B> C, then in a linear hierarchy we also have A>C. So, by
using only the N—1 relevant relationships and the transitive property, we
retrieved the totality of the N (N—1)/2 relationships of the dominance matrix. An
example of a complete order is a set of real numbers, in which each pair of
numbers is related by the “greater than’ relation.

The concept of linear hierarchy is customarily found in studies of the
dominance relationships of small structures [Drews, 1993]. The concept is still
useful if the departures from linearity, as caused by circular triads, nontransi-
tivity, or noncomparability between two members, are small. These departures
may be measured and statistically tested (for statistical methods see Appleby
[1983] and de Vries [1995]).

A small index of linearity means a low degree of linear hierarchy, but it does
not mean the absence of hierarchy. Another type of hierarchy, called partial
hierarchy, may be in operation.

Partial Hierarchy

The requirement of completeness restricts the use of the linear hierarchy
model to small groups. It is practically impossible to obtain completeness among
members of a large group of, say, 200 individuals. Temporal limitations prevent
the sampling of a sufficient amount of dominance relationships. Even when it is

Am. J. Primatol. DOI 10.1002/ajp



192 / Izar et al.

possible to gather a sufficient amount of dominance relationships, the structure is
not expected to be the same after the long period of time needed to gather all of
the dominance relationships has passed.

A hierarchy that is not complete is called a partial hierarchy. Therefore, given
that some dyads are not comparable, the total amount of dominance relationships
is smaller than N(N—1)/2. In a partial hierarchy, we cannot graphically display all
of the members in a unique lineage. Partial hierarchies may be of two types
depending on the number of relevant relationships needed to describe the partial
hierarchy.

In the first type, the number of relevant dominance relationships is still equal
to N—1, but they are distributed in at least two lineages that emerge from a
common member. Suppose, for example, that the relevant relationships are given
by the two lineages A>B>C and A>B>D>E. In each lineage, each member is
comparable to the other. Except for the common members, members from distinct
lineages do not show comparability. The common members of these two lineages
are A and B. The relationship A > B appears in the two lineages. If we eliminate
the redundancy by discarding the relationship A>B from one lineage, we may
describe the partial hierarchy by A>B>C and B>D > E or, equivalently, by B>C
and A>B>D>E, so that the amount of relevant relationships is still N—1. A
particular example of a partial hierarchy with (N—1) relevant relationships is the
despotic hierarchy (i.e., one member dominates the others and no dominance
relationship exists among the other members [Wilson, 1975]). A despotic
hierarchy may be represented by a radial display, with the dominant member
at the center and generating several lineages, that reflects the relevant
relationships (four dominance relationships, A>B, A>C, A>D, A>E, in a group
of five members, with A being the despotic member).

In the second type, the number of relevant relationships is less than N—1;
that is, there are at least two independent lineages. For example, a partial
hierarchy with five members may be formed by the two independent lineages
A>B>C and D>E. Note that the number of relevant relationships is smaller
than N—1 (in this example, three instead of four).

Distinguished Members in a Hierarchy

Ordered sets have distinguished elements. For a hierarchical structure, the
corresponding distinguished members are as follows (the corresponding names in
set theory are in parentheses):

The dominant member (last element) dominates every member in the
structure. A hierarchy has at most one dominant member. A dominant member
only exists in linear hierarchies and in partial hierarchies where all lineages begin
at the dominant member.

The partial-dominant member (maximal element) is not dominated by any
member of the structure. The single partial-dominant member of a structure is
also the dominant member, but partial hierarchies may have more than one
partial-dominant member (for example, two in a structure with two independent
lineages). In this case, the structure has several partial-dominant members but no
dominant member.

The subordinate member (first element) is dominated by every member of the
structure. Like the dominant member, the subordinate member (if there is one) is
unique. This type of dominance relationship occurs in linear hierarchies or in
partial hierarchies in which all lineages end at the subordinate member.
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The partial-subordinate member (minimal element) does not dominate any
member of the structure. The single partial-subordinate member of a structure is
also the subordinate member, but partial hierarchies may have more than one
partial-subordinate member. In this case, the structure has several partial-
subordinate members but no subordinate member.

Assumption of Transitivity

In large structures, it is biologically unrealistic to expect that the ‘“dominant”
member should fight against all the other members of the group. In this case, we
have to imply transitivity to try to uncover its hierarchical nature. That is, given
the observed dominant relationships A>B, B>C, C>D, etc., but not necessarily
A>C, or A>D, or B>D, etc., we simply force the structure to be transitive by
implying A>C, A>D, B>D, etc. After the assumption of transitivity is applied
repeatedly until no more changes occur, the modified dominance matrix is called
the transitive closure graph (here the transitive matrix). Therefore, the
assumption of transitivity may distort the dominance matrix by introducing
extra dominance relationships. We can evaluate the severity of the distortion by
analyzing the quantity and nature of the extra dominance relationships.

The assumption of transitivity states simply that if [A,B] = 1 and [B,C] = 1,
we have to make [A,C] = 1, whatever may be the observed value of [A,C]. If this
value is already 1 (that is, transitivity already holds), no information is added to
the dominance matrix. If the value is zero, however, the severity of the distortion
depends on the value of [C,A]. In the simplest case in which [C,A] is also zero, the
only distortion is that we force the structure to be transitive. If, however, [C,A] =
1, a circular triad occurs, and then the transitive matrix fails to be asymmetric
and irreflexive. It fails to be asymmetric because [A,C] = 1 and [C,A] = 1.
Furthermore, it fails to be irreflexive because [A,A] = 1 (under the assumption of
transitivity, if [A,C] = 1 and [C,A] = 1, then [AA] = 1).

Treatment of Ties

Dominance matrices are constructed from the observed contests between any
two members. In general, the decision as to which member is the winner and
which is the loser is based on the net result of the contests. However, ties may
occur.

There are three types of ties to the points discussed here: zero ties, low-value
ties, and high-value ties. The definition of structure given above admits zero ties.
However, nonzero ties must be managed somehow to preserve the property of
asymmetry.

Zero Ties

Zero ties occur when there exist members i and j such that [i,jl = 0 and
[7,1 = 0. Zero ties may occur by insufficient or biased sampling (in which cases the
only recommendation is to correct the sampling procedure), or by the absence of
dominance relationships. In the second case, a zero tie is a real phenomenon
resulting from the impossibility of the members interacting (due, e.g., to physical
distance or to formal impediments), from their unwillingness to contest (e.g.,
between a mother and her juveniles in some primate groups), or from any
unknown avoidance strategy adopted by one or another member. In this work, all
zero ties are treated as observational zeros (see also de Vries [1995]).
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Low-Value Ties

Some pairs of members may show relatively low-value ties (say, one). We may
consider these low values as reflecting only fortuitous and rare encounters that
supposedly do not represent the general and regular absence of the dominance
relationships that characterize the interaction between the members of the pair.
In this case, a clearer and simpler account of the social structure may be obtained
by setting these low values to zero.

We may extend the argument to cover those cases in which the dominance is
established with relatively low values (say, 1 x 0). However, to define how
relatively low these values are, and to evaluate the consequences of zero ties, a
deeper analysis of each specific empirical dominance matrix is needed.

High-Value Ties

The occurrence of high-value ties is not expected in social structures in which
dominance relationships are well established. High-value ties may occur in some
transient phases of the dominance process (e.g., as a consequence of the group
splitting or the introduction of new members), the high values resulting from a
temporary escalation in the contests for hierarchical position. These conditions of
unstableness generally cannot be satisfactorily dealt with by any method for
describing structures (but see Broom [2002]). If a high-value tie is encountered,
one has to decide the direction of the dominance relationship by using other kinds
of information or collecting additional data. Obviously, since high values reflect
contests for position in the social structure, they cannot be simply set to zero.

Dominance Trees

Lineages such as A>B>C>D are easily represented in hierarchical
diagrams as, say, A—>B—C—D. The specific member of the structure chosen to
begin all lineages is called the root (A, if the lineage in the example is unique). A
linear hierarchy is represented by a unique lineage beginning at the dominant
member and ending at the subordinate member. For example, suppose the
hierarchy is partial and has the second lineage A—B —E —F. Both arrangements
may be represented in a single directed tree diagram that bifurcates at B. The
common parts of the paths are represented collectively as A—B and, emerging
from B, the substructures C—D and E—F.

Before we discuss this type of representation further, we will review some
graph theory concepts that are useful for understanding dominance structures.

Paths in Dominance Structures

We have said that a dominance structure is a graph. We refer to a dominance
structure as an elementary path (or path, for short) as an ordered arrangement of
members, such as A—B—C— D, in which no member is repeated. The members
of a path are related by the reachability relation. In the example above, we may
say that A reaches the other four members, C reaches D, D is reached from A, etc.
Therefore, reachability is a one-way relationship from higher members of the
hierarchy to lower ones, i.e., reachability is a relation in which transitivity holds.

If the substructure represented by a given path is hierarchical, then by
definition no hierarchically lower member reaches a higher member. In contrast,
if we assume that the members of the path are involved in circular triads, then by
designating each member as the root, every member reaches and is reached by
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other members of the substructure. In this case, the structure is not hierarchical
at all.

Dominance Tree Representation

A given path encloses all information contained in its subpath. For example,
the information contained in the path B—>C—D is already contained in the
augmented path A—»B—C—D—E. Thus, to get the maximum path information
and eliminate redundancies, only the maximal paths are represented in the
dominance tree. All information about direct dominance relations, such as A— D,
are already encompassed in the maximal path and are skipped in the dominance
tree.

The tree representation of all non-redundant maximal paths from a given
member R is called the dominance tree of R. Given the dominance tree of R, the
reachability relation can be used to construct a matrix based on the reachability
relation. We call this the tree-dominance matrix of R. The importance of a
member in the structure is given by the number of relationships in the transitive
matrix that is explained by its tree-dominance matrix. For example, the tree-
dominance matrix of the dominant member is identical to the transitive matrix.

Reduced Graph

Suppose that A dominates all the others, B dominates all the others except A,
and that C, D, and E are involved in circular triads (for example, C>D, D> E, and
E>C). The best dominance tree (that for member A) has three maximal paths:
A-B-C-D-E, A-B-D—-E—-C,and A~B—-E—C—D. Note that C, D, and
E are represented more than once in the dominance tree because of their
nonhierarchical relationships. The maximal subset (in this example, formed by C,
D, and E) in which each member reaches all the others is called a “strong
component’ in graph theory. If each strong component is considered as a unit,
and, given two units X and Y, [X,Y] = 1 if there exist a member x of X and a
member y of Y such that [x,y] = 1, then the graph formed by these units and their
relationships is called a reduced graph of the structure. Thus, the dominance tree
of the example above can be represented by the diagram A—B—{C,D,E}, in
which the keys enclose the members of the maximum strong component. Under
the assumption of transitivity, every reduced graph of a dominance structure is a
hierarchy, so we can analyze the reduced graph of a nonhierarchical structure
with the concepts used here.

Reduced graphs are also useful for describing situations in which two or more
lineages merge, as in A~ B-C—->D—->F—-G, A-B>E—->F—-G (see Dominance
Tree Analysis of Empirical Data below).

Algorithm for Constructing Dominance Trees

In this work we constructed dominance trees with the use of DOMINA, a
Delphi application that can be sent upon request. The general features of the
algorithm are described below.

Initialization

A. Construct the dominance matrix, with one if the row member won the
column member, or zero otherwise.
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B. To find the transitive closure of the dominance matrix, impose transitivity
to the matrix by the repeated application of the assumption of transitivity until
the matrix does not change any more. The resultant matrix is the transitive
matrix of dominance.

C. Select a given member R as the root of the tree representation.

Steps

1. Enumerate all the paths from R to the other members.

2. Discard the non-maximal paths.

3. Discard the redundant paths (i.e., paths whose information is already
present in another path).

4. Stop.

The result of the algorithm is a set of paths that can be represented as a
hierarchical tree rooted at R. Every path of the tree is elementary (a member of
the path is traversed only once), but a member may be represented in more than
one lineage in the tree.

DOMINA also produces a text file containing the transitive matrix, the
dominance tree, and the tree-dominance matrix of each member; a list of the ties
of the dominance matrix; the partial-dominant and partial-subordinate sets; and
the strong components of the transitive matrix.

Dominance Tree Analysis of Artificial Data

To illustrate the properties and some of the potential applications of
dominance trees for describing dominance structures, we applied this method
to a hypothetical data set that was constructed to mimic complex social
interactions, expressed as violations of the hierarchical properties (irreflexivity,
asymmetry, and transitivity), that may occur in empirical dominance matrices.

The seven artificial dominance data sets are shown in Table I, row a.
Dominance matrix la is a linear hierarchy, and dominance matrices 2a and 3a are
partial hierarchies. The dominance matrices 4a and 5a are not hierarchical, but
they become hierarchical under the assumption of transitivity: transitive matrix
4q is a linear hierarchy, and transitive matrix 5a is a partial hierarchy. In relation
to data sets 6 and 7, neither the dominance nor the transitive matrices are
hierarchical. The tree dominance analysis of the seven data sets gives the
following results:

Dominance matrix la is a typical linear hierarchy (index of linearity equal to
1.000) in which the member A dominates the other members, B dominates the
other members except A, C dominates the other members except A and B, etc.
Note that when the transitive matrix is identical to the dominance matrix, no
information is added by the assumption of transitivity. The dominance tree of
each of the five members is represented in Fig. la—e. The relative hierarchical
position of a given member can be measured by the number of individuals it
dominates in its dominance tree (see matrix la). The complete representation of
the structure is given by the dominance tree of the dominant member A (Fig. 1a),
in which each member is ranked according to its hierarchical position. It strictly
provides all the information of the dominance matrix, as can be seen by the tree-
dominance matrix of member A, matrix 1. Notice that the dominance trees of the
other members are merely subpaths in the dominance tree of member A. Member
E is the subordinate member of the structure.
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Fig. 1. Dominance trees of the artificial data in Table I: (a—e) data 1, (f) data 2, (g) data 3, (h and i)
data 5, (j-m) data 6, and (n-s) data 7.
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Dominance matrix 2a is a particular type of partial hierarchy, the despotic
structure, in which the dominant member A dominates other members and no
dominance relationship exists among the other members (i.e., all members,
except A, are partial-subordinate members). As occurs for every hierarchical
structure, the transitive matrix is identical to the dominance matrix. Figure 1f
illustrates the tree diagram of member A that completely represents the
structure. The tree-dominance matrix of A is identical to the dominance matrix.
The dominance trees of the other members (not represented here) contain only
one member (the root).

Dominance matrix 3a is a partial hierarchy with two lineages—A —-C—E and
A —B—D—emerging from the dominant member A, with D and E being the two
partial-subordinate members. Again, notice that the dominance and transitive
matrices are identical. The most informative tree is that of the dominant member
A (Fig. 1g). The tree-dominance matrix of A is identical to the dominance matrix.

Dominance matrix 4a is not hierarchical because it fails to be transitive.
However, after the dominance-directed tree analysis is applied, the resulting
transitive matrix is a linear hierarchy that is identical to the dominance matrix
la. The dominance trees of matrix 4a (not represented here) are identical to that
represented in Fig. la—e. The assumption of transitivity allows us to imply linear
hierarchy where only the adjacent members of the lineage show dominance
relationships. The tree representation of member A recovers all the information
of the transitive matrix (its tree-dominance matrix is identical to the transitive
matrix).

In the dominance matrix 5a there are two independent substructures. An
inspection of the dominance trees allows us to detect two independent lineages:
A—-B-C and D—-E. To represent the dominance structure, we need the trees of
the two partial-dominant members A and D (Fig. 1, trees h and i). Thus, to
retrieve all the information of the transitive matrix we need to sum up the tree-
dominance matrices of member A and D (the resultant matrix is the tree-
dominance matrix 5b).

In the transitive matrices of examples 4 and 5, the assumption of transitivity
affects only off-diagonal cells, that is, no circular triads are introduced. The
following analysis of data 6 and 7 are examples of a more severe type of distortion.

The dominance matrix 6a represents a dominance structure that mixes
hierarchical and nonhierarchical properties: on the one hand are dominant
members A (which dominates all other members) and B (which dominates all
other members except A), and on the other hand are circular triads involving C,
D, and E. Note that the diagonal entries of the transitive matrix 6a for C, D, and E
do not obey the irreflexivity property. The dominance tree that recovers most
information from the transitive matrix is that of member A (Fig. 1j). This tree-
dominance matrix is identical to the transitive matrix. However, the trees of
members D and E show the circularity (Fig. 1k-1) and a reduced graph represents
the circularity (Fig. 1m).

Finally, dominance matrix 7a is obtained by two modifications of dominance
matrix la, with the cell [A,E] becoming zero and the cell [E,A] becoming one. The
matrix is by no means hierarchical and the assumption of transitivity maximally
distorts the dominance matrix, as can be seen by the reflexivity of the transitive
matrix (in the transitive matrix 7a, all diagonal cells are one-valued). Although
there are some differences in the tree representation of each member (see
Fig. 1n-r), which may be explored if a deeper investigation of the dominance
relationships is needed, the basic dominance information is that each member
dominates all the other members. To retrieve the dominance information from
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the matrix, all the dominance trees must be inspected. In fact, the transitive
matrix can be retrieved only by summing up the tree-dominance matrices of all
five members (matrix 7b). A reduced graph represents the circularity (Fig. 1s).

Evaluation of Distortion

The distortion produced by the assumption of transitivity may be measured
by the amount of intrusive information added to the dominance matrix. If the
dominance matrix is a hierarchical structure, then the transitive matrix is equal
to the dominance matrix and the distortion is zero (see the matrices for data 1-3
in Table I).

A mild degree of distortion occurs when the assumption of transitivity does
not produce information that contradicts the irreflexivity property, as indicated in
data sets 4 and 5 in Table 1. Every method of data simplification may imply some
distortion of the original data. To evaluate the pros and cons of a given method,
we need to balance the degree of distortion produced by it, and its ability to
uncover the ‘“‘subjacent” structure of the data. An analysis of matrix 4a is
illustrative in this respect.

The transitive matrix 4a shows a lot of new dominance information. Its
transitive matrix is equal to the linear (complete) hierarchical dominance matrix
la. Given the assumption of transitivity, the four dominance relationships of
matrix 4a are sufficient to produce a linear hierarchy, and in this respect are more
parsimonious than matrix la. In some sense, matrix 1la has redundant dominance
information that we can completely retrieve by applying the assumption of
transitivity on a more parsimonious dominance matrix (matrix 4a).

The great degree of distortion occurs when the dominance matrix has
circular triads, as in matrix 6a and, particularly, matrix 7a. The corresponding
transitive matrices show diagonal cells in which the property of irreflexivity is
disobeyed. Despite the great amount of distortion introduced by the assumption
of transitivity, the dominance tree analysis may be still useful for describing the
structure, as can be seen in Fig. 1j. In this figure the mixed structure of matrix 6a
may be represented by the tree structure A—B— {C,D,E}, where the members in
brackets form a subset in which every member reaches the others. In the
transitive matrix 7a, every member reaches all the other members. Therefore, all
members form the unique strong component {AB,C,D,E}. In this case, the
dominance structure cannot be fully represented by any single dominance tree.

Information Conveyed by a Dominance Tree Analysis

The dominance tree allows a flexible evaluation of the role and status of each
member in the structure to be performed. Particularly for the linear hierarchy,
the dominant member is that which reaches all the others but is not reached by
anyone, and the subordinate member is that which does not reach anyone but is
reached by all others. Given that a given hierarchy may be partial or may be
formed by two or more independent subsets of members, we have to enumerate
the members that are in the partial-dominant or partial-subordinate set (for
example, in a partial hierarchy with two lineages there are two members in the
subordinate set, one for each lineage). Then, the partial-dominants are members
of the set of individuals that are not reached by anyone, whereas the partial-
subordinates are members of the set of individuals that do not reach anyone. The
isolated members are simultaneously partial-dominant and partial-subordinate.
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They are easily enumerated by finding the intersection (in set theory terms) of
the partial-dominant and partial-subordinate sets.

In practice, only the dominance trees of the partial-dominant members are
relevant to an analysis of the structure. Other members produce trees with
redundant information. The information of the transitive matrix is retrieved only
by summing up the tree-dominance matrix of each partial-dominant member.

A rank may be constructed by attaching, for each member, the number of
individuals it reaches in its dominance tree (see the numbers in column 6 of each
matrix of row a, Table I). In the linear hierarchies of matrices 1la and 4a (Table I)
these numbers have a simple meaning in terms of the hierarchical rank of the
individuals. In the partial hierarchies of matrices 3a and 5a (Table I) these
numbers are only meaningful in terms of the hierarchical rank of the individuals
in each lineage—they are meaningless for different lineages. Thus, in matrix 5a,
rank 2 for B is not directly comparable to rank 2 for E because they pertain to
different lineages (see that B is not a subordinate member, whereas E is).

Dominance Tree Analysis of Empirical Data

To illustrate the practical usefulness of the dominance tree analysis, we
applied the method to infer the dominance structure of a semifree-ranging group
of brown capuchin monkeys (Cebus apella). These data were collected by R.G.F.
from a group of 17 individuals (three adult males, two subadult males, four adult
females, and eight immatures of both sexes) inhabiting a peninsula of 18 ha
within the Tieté Ecological Park (Sao Paulo, Brazil), a reforested area where the
animals were introduced (for further details on the study group and site, see
Ottoni and Mannu [2001] and Ferreira et al. [2002]). The indicators of dominance
used in this work included aggression/receive aggression (chase, bite, or
aggressive display), approach/retreat, and displace/be displaced. Data were
collected on an all-occurrences basis. Only clear dyadic interactions were used.
The data used here comprise ca. 500 hr of observations collected from February
2000 to January 2001 [Ferreira, 2003].

The dominance matrix of the studied group (Table II) is not hierarchical
because it fails to be transitive. Zero ties accounted for 46 dyadic relations. Three
dyads had low-value above zero ties, all between immature males (EdMj x MnMj
= 1; FrMj x LbMj = 1; MnMj x DwMi = 1). After the dominance-directed tree
analysis is applied, the resulting transitive matrix (Table III) is a partial
hierarchy with several lineages emerging from the partial-dominant partial-
subordinate members. The treatment of ties and imposition of transitivity
introduced 27 dominance relations to the matrix, but did not provoke severe
distortions in the original structure. In particular, no information was added to
the main diagonal (i.e., the irreflexivity was not violated by the assumption of
transitivity).

The most informative tree is that of the dominant member BqMa (Fig. 2).
The tree-dominance matrix of BqMa is identical to the dominance matrix. Several
paths are represented more than once in the dominance tree due to their
nonhierarchical relationships. Thus, the dominance tree can be represented by
the reduced graph of Bq’s dominance tree (Fig. 3), in which the individuals are
ranked by the number of vertices presented on their trees. The reduced graph
shows the adult male Bq as the dominant member, followed by the adult female
Me. Three adults emerge with different ranks (AnFa and SuMa: rank 3; FiFa:
rank 7). Then a merging occurs, with members AnFa and SuMa dominating
the member MeMa (rank 4). The structure splits again into different lineages
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M, male; F, female, a, adult; s, subadult; j, juvenile; i, infant.
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CsFi CsFj QuMi CsFj CsFj QuMi CsFi CsFj QuMi CsFj CsFj QuMi
CsFj CsFj QuMi DwMi [VsFi| DwMi [VsF CsFi CsFj QuMi DwMi  [VsFi| DwMi [Vski
el
DwMi Q Csh LbM;j LbMj DwMi CsFj LbMj LbMj
LbMj FrMj PeMs Mub4j CsH CsF QuMi LbMj FrMj PeMs MnMj
EdMj JaFa DwMi [ VsFj EdMj JaFa
EIMs CsFj LbMj EIMs
MeMa Frivij MnM;j MeMa
AnFa FiFa SuMa
MeFa
BgMa

Fig. 2. Dominance tree of the dominant member based on empirical data from a semifree group of
capuchin monkeys (Tables II and III). M = male, F = female, a = adult, s = subadult, j = juvenile, i
= infant.

from ranks 5, 6, 8 and 10, but these lineages are merged through common
subordinate members at ranks 8 (FiFa and JaFa dominating MnMj), 9 (three
lineages dominating LbMj), 11 (FiFa and JaFa dominating FrMj), and 12 (three
lineages dominating CsFj). In each case, the common subordinate member is a
juvenile.

The resulting partial-dominance hierarchy, with more than one individual
occupying the same rank position, is related to the absence of actual aggressive
conflicts between some members. The absence of aggressive conflicts can be
credited to an avoidance strategy adopted by subordinate group members [Izar &
Sato, 1997] or to tolerance from dominant members [Izar, 2004]. In fact,
according to socioecological models, tolerant dominance hierarchies are expected
when primate groups are subjected to strong food competition within and
between groups [Sterck et al., 1997]. This kind of structure cannot be properly
assessed by other methods, as stated in the Introduction.

CONCLUSIONS

In this work we defined a social structure by its set of members and set of
dominance relationships. A hierarchy is a structure that must be irreflexive,
asymmetric, and transitive. If all pairs of members show dominance relationships,
the hierarchy is said to be linear; otherwise, it is a partial hierarchy. Structures
may mix hierarchical and nonhierarchical properties, or they may be non-
hierarchical.
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12 (0) CiFj QuMi
11 (1) FrMj DwMi
A
10 @) VaFj
9 (4) Lb%\’lj
8(5) MnMj PdMs  EdMj
A A
7 (7 F lf a
6 (8) JaFa
5(10) E]TMS
411 M;Ma
3(12) AnFa SuMa
2 (15) M?Fa
1 (16) BgMa

Fig. 3. Reduced graph from the dominance tree of the dominant member in a semifree group of
capuchin monkeys. M = male, F = female, a = adult, s = subadult, j = juvenile, i = infant. The
figures to the left indicate the rank based on the number of individuals dominated (shown in
brackets).

Current methods for describing dominance relationships are devised to only
distinguish linear from nonlinear structures. Nonlinear structures may or may
not be hierarchical, but an index of linearity is not able to make this distinction.
In particular, the index cannot detect partial hierarchies.

Dominance tree analysis is proposed to distinguish these diverse forms of
organization. By abandoning the approach of encompassing all descriptions of
the structure in only one index, or trying to force all members into a ranked list
of individuals, dominance tree analysis demands more involvement on the part
of the analyst to interpret the results (i.e., the analysis of all dominance trees,
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evaluation of the status of each member in the tree structure, occurrence of
circular triads, etc.). In so doing, dominance tree analysis allows the researcher to
perform a richer and more flexible analysis of the organization of the dominance
relationships than the current methods. A distinctive feature of dominance
tree analysis is that it is devised not only to detect hierarchical organizations, but
also to determine when hierarchical and nonhierarchical principles are operating
in different subsets of individuals. In so doing, it provides a simple tree
representation where both situations are clearly differentiated.

The degree of distortion produced by the assumption of transitivity may be
explicitly evaluated by inspecting the amount and the nature of the extra
dominance relationships introduced by the assumptions of the dominance matrix.
Departures from the hierarchical principles can be measured by the amount of
violations of the principle of irreflexivity. These violations of irreflexivity may be
generalized or may be restricted to some cells. Dominance tree analysis is able to
distinguish between these mixed cases, with hierarchical and nonhierarchical
principles operating in different places of the structure.

Each member may be the root of the dominant tree. So, from a structure
with N members, a total of N trees may be constructed, but only those of
the partial dominant members are relevant for describing the structure. The
other trees can be discarded because they show redundant information.
The analysis of the dominant trees allows us to describe the characteristics of
the dominant structure, whether it is hierarchical or not, as well as the
hierarchical status of each member in the structure. The degree of importance
of a given member may be evaluated by the number of individuals it dominates
in its dominance tree, and thus a rank may be constructed even if some dyads
fail to show hierarchical relationships. The number of relevant dominance
trees is directly related to the complexity of the structure. For example, any
linear hierarchy requires only the dominance tree of the dominant member.
This tree encompasses all of the information from the dominance matrix
or the tree dominance matrix. At the other extremes, all dominance trees are
needed to describe the structure in which any member is involved in circular
triads with any other two members (that is, in which the tree dominance matrix
is reflexive).

Dominance trees allow the identification of different substructures in a
partial hierarchy. These substructures may take the form of different lineages
beginning from a common substructure, or that of independent substructures,
or they may even constitute a subset of members in which no hierarchical
relationships occur.

The use of dominance trees to describe dominance structures relies on the
validity of adopting the assumption of transitivity. When the structure is already
hierarchical, irrespectively of being linear or partial, the assumption of
transitivity does not produce any change in the dominance matrix. Minor
distortions resulting from the introduction of dominance relationships into the
off-diagonal cells may appear, but they do not constitute a real impediment to
uncovering the hierarchical nature of the dominance relationships in the group.

Important distortions occur when the assumption of transitivity introduces
reflexivity into the transitive matrix. In that case the entire structure is not
strictly hierarchical; however, dominance tree analysis is still able to show where
the hierarchical property of irreflexivity is obeyed and where it is not obeyed.
Thus it can provide a detailed description of the mixed dominance structure (e.g.,
where hierarchy occurs, which members are involved in nonhierarchical circular
triads, the status of each member, etc.).

Am. J. Primatol. DOI 10.1002/ajp



ACKNOWLEDGMENTS

Dominance-Directed Tree Method / 207

We thank the managers of Tieté Ecological Park, where we conducted our
studies, and two anonymous reviewers who contributed helpful comments on
early versions of the manuscript. This work was supported by CAPES (grants
00022/03-9 to P.I. and 2172-97/6 to R.G.F.) and FAPESP (grant 914038-1 to P.1.).

REFERENCES

Appleby MC. 1983. The probability of linear-
ity in hierarchies. Anim Behav 31:600-608.

Broom M. 2002. A unified model of dominance
hierarchy formation and maintenance.
J Theor Biol 219:63-72.

Carley KM, Prietula MdJ. 1994. Computational
organization theory. Hillsdale, NJ: Lawr-
ence Erlbaum Associates. 320p.

de Vries H. 1995. An improved test of
linearity in dominance hierarchies contain-
ing unknown or tied relationships. Anim
Behav 50:1375-1389.

de Vries H. 1998. Finding a dominance order
most consistent with a linear hierarchy:
a new procedure and review. Anim Behav
55:827-843.

de Vries H, Appleby MC. 2000. Finding an
appropriate order for a hierarchy: a com-
parison of the I&SI and the BBS methods.
Anim Behav 59:239-245.

Drews C. 1993. The concept and definition of
dominance in animal behaviour. Behaviour
125:283-313.

Ferreira RG, Resende BD, Mannu M, Ottoni
EB, Izar P. 2002. Bird predation and prey-
transference in brown capuchin monkeys
(Cebus apella). Neotrop Primates 10:84-89.

Ferreira RG. 2003. Coalitions and social
dynamics of a semi-free ranging Cebus
apella group. Ph.D. dissertation, University
of Cambridge, Cambridge, UK. 155p.

Harary F, Norman RZ, Cartwright D. 1965.
Structural model: an introduction to the

theory of directed graphs. New York: John
Wiley & Sons. 415p.

Izar P, Sato T. 1997. Influéncia de abundancia
alimentar sobre a estrutura de espacamen-
to interindividual e rela¢oes de dominancia
em um grupo de macacos-prego (Cebus
apella). In: Ferrari SF, Schneider H, edi-
tors. A primatologia no Brasil 5. Belém:
UFPA. p 249-267.

Izar P. 2004. Female social relationships of
Cebus apella nigritus in southeastern
Atlantic forest: an analysis through ecolo-
gical models of primate social evolution.
Behaviour 141:71-99.

Jameson KA, Appleby MC, Freeman LC.
1999. Finding an appropriate order for a
hierarchy based on probabilistic domi-
nance. Anim Behav 57:991-998.

Ottoni EB, Mannu M. 2001. Semifree-ranging
tufted capuchins (Cebus apella) sponta-
neously use tools to crack open nuts. Int J
Primatol 22:347-358.

Pinter CC. 1971. Set theory. Reading, MA:
Addison-Wesley Publishing Co. 216p.

Pollock JL. 1990. Technical methods in
philosophy. London: Westview Press. 126p.

Sterck EHM, Watts DP, van Schaik CP. 1997.
The evolution of female social relationships
in nonhuman primates. Behav Ecol Socio-
biol 41:291-309.

Wilson EO. 1975. Sociobiology. The new
synthesis. Cambridge: Harvard University
Press. 697p.

Am. J. Primatol. DOI 10.1002/ajp



